
Chapter 5

Patterns of Open Innovation in Open Source Software

Joel West
Associate Professor, College of Business, San José State University

One Washington Square, San José, CA 95192-0070 USA
+1-408-924-7069; fax: +1-408-924-3555

Joel.West@sjsu.edu

Scott Gallagher
Assistant Professor, College of Business, James Madison University

Harrisonburg, VA 22807 USA
+1-540-568-8792; fax: +1-540-568-2754

gallagsr@jmu.edu

26 October 2005

Submitted for
Henry Chesbrough, Wim Vanhaverbeke and Joel West, eds.,

Open Innovation: Researching a New Paradigm, Oxford University Press (2006).

2

1. INTRODUCTION

Models of open innovation offer the promise that firms can achieve a greater return on their

innovative activities and their resulting intellectual property (IP). Open innovation models stress

the importance of using a broad range of sources for a firm’s innovation and invention activities,

including customers, rivals, academics, and firms in unrelated industries while simultaneously

using creative methods to exploit a firm’s resulting IP (Chesbrough, 2003a). While the use of

external sources of innovation is nothing new, recently some of the most successful high-tech

firms have been those that utilized open innovation rather than more traditional “vertically

integrated” innovation approaches.

The open innovation paradigm is often contrasted to the traditional vertical integration model

where internal R&D activities lead to internally developed products that are then distributed by

the firm. Consistent with Chapter 1, we define open innovation as systematically encouraging

and exploring a wide range of internal and external sources for innovation opportunities,

consciously integrating that exploration with firm capabilities and resources, and broadly

exploiting those opportunities through multiple channels. Therefore, the open innovation

paradigm therefore goes beyond simply the externalization of research and development as

identified by von Hippel (1988). Rather than just a shift in the technical production of intellectual

property, open innovation reflects a transformation of how firms use and manage their IP.

Over the past 20 years, an increasingly popular example of open innovation has been open

source software, exemplified by the Linux operating system. Open source software involves

collaboration between firms, suppliers, customers or makers of related products to pool software

R&D to produce a shared technology. At the same time, open source IP policies mean that this

shared technology is available to potential buyers at little or no cost.

3

Together, the shared production and low cost of open source software has forced firms to

reconsider the proprietary business models used by commercial software companies for the past

25 years. The essential issue for a firm’s business model is, “How does the firm create value for

the customer while simultaneously extracting some of that value for itself?” The rise of open

source software has enabled a wave of experimentation in software business models that is

ongoing even today.

In this chapter, we consider how open source addresses what we identify as three

management challenges of open innovation: maximizing the use of internal innovation;

incorporating external innovation into the firm; and motivating a supply of such external

innovation to support the firm. We then classify the strategies taken by companies selling open

source software based on their business models, and suggest how this fits into broader issues of

open innovation.

2. CHALLENGES OF OPEN INNOVATION

The pace of technological advance has often been subdivided into two phases: invention (a

scientific breakthrough) and innovation (commercialization of the invention) — a distinction

Nelson and Winter (1982: 263) attribute to Schumpeter (1934). This split parallels a similar

bifurcation between research and development, where inventions come from basic research and

innovations from the development group. Many organizations, however, define additional phases

between the two extremes, as with Intel’s “advanced development” step (Tennenhouse, 2003).

Others have attempted to subdivided innovation into “radical” and “incremental”, where the

former more closely resembles the “invention” concept (e.g. Leifer et al, 2000).

Like Nelson and Winter, we use “innovation” in its broadest sense to refer to the entire

process by which technological change is deployed in commercial products. Such innovation

4

may incorporate formally protected intellectual property (such as patents or copyrights) that is

difficult to imitate, or it may reflect codified knowledge that is readily imitated and at best

provides a transient competitive advantage.

In contrast to earlier models and “fully integrated innovators” like AT&T (now Lucent) Bell

Labs and IBM which do basic research through commercial products, open innovation celebrates

success stories like Cisco, Intel and Microsoft, which succeed by leveraging the basic research of

others (Chesbrough, 2003a). Under this paradigm, firms exploit both internal and external

sources of innovation, while maximizing the returns that accrue from both sources (Table 5.1).

Tactics that embody an open innovation approach include exploiting knowledge spillovers

and consulting with venture capitalists, while also using both inbound and outbound licensing of

key technologies. Although earlier frameworks acknowledged the role of external knowledge

and “accidental” internal discoveries, it is the systematic encouragement and integration of these

issues coupled with creative exploitation of IP that distinguishes open innovation from earlier

innovation models.

Firms practicing open innovation face three inherent managerial challenges:

• maximization. Firms need a wide range of approaches to maximize the returns to

internal innovation — not just feeding the company’s product pipeline, but also

outbound licensing of IP, patent pooling and even giving away technology to

stimulate demand for other products.

• incorporation. The existence of external knowledge provides no benefits to the firm if

the firm cannot identify the relevant knowledge and incorporate it into its innovation

activities faster than its rivals and new entrants. This requires scanning, recognition,

absorption and also the political willingness to incorporate external innovation.

5

• motivation. Open innovation assumes an ongoing stream of external innovation, but

this raises the question of who will continue to generate IP externally that can be used

by the firm? We suggest that over the long term, firms must cultivate ways to assure

continued supply of relevant external technologies and IP.

We discuss each of these challenges below.

2.1 Maximizing Returns to Internal Innovation

A central concern to open innovation is how to best use the internal R&D capabilities of the

firm to maximum advantage. Those capabilities can be used for:

• generating innovations to be internally commercialized (the traditional model);

• building absorptive capacity and using that capacity to identify IP laying beyond the

boundaries of the organization, i.e. external innovation;

• generating innovations that generate returns through external commercialization (e.g.

licensable patent portfolios or spin-offs); and

• generating IP that does not produce direct economic benefit, but indirectly generates a

return through spillovers or sale of related goods and products.

Successful approaches will often combine a variety of these approaches. For example, to

identify promising technologies, Intel establishes research labs near top university research

groups, with open flows of information in both directions. If an innovation proves promising,

Intel recruits the top academic researchers to help commercialize the technology and see it

through to production (Tennenhouse, 2003).

This approach can be used cooperatively as well, as with the GSM patent pool assembled by

European telephone makers in the early 1990s. While the patents were often the result of basic

research, contribution of a patent to the patent pool allowed firms to have favorable access to all

6

of the IPR of the GSM standard, creating a cost advantage for European pool participants over

potential Asian rivals (Bekkers et al, 2002).

2.2 Incorporating External Innovations

While firms may generate considerable internal knowledge to support their innovation

activities, von Hippel (1988) identified four external sources: 1) suppliers and customers; 2)

university, government and private laboratories; 3) competitors; and 4) other nations. Various

models have been developed to explain how firms can exploit external knowledge. Perhaps the

simplest method is to imitate a competitor: such free riding on the product and market

investments of rivals is a common way for firms to overcome a first mover strategy (Lieberman

and Montgomery, 1998). Consulting with customers can provide firms ideas about discovering,

developing, and refining innovations (von Hippel, 1988). Public sources are also an important

source of knowledge, for example government R&D spending was identified almost 50 years

ago as an important stimulus for private R&D (David, Hall, and Toole, 2000). University

research is one key source of external innovation for some industries (Fabrizio, Chapter 7).

The managerial challenges of utilizing external knowledge then center around identifying

useful external knowledge, and then integrating that knowledge with the firm. For example, for

new products there are significant trade-offs between innovation speed, development costs, and

competitive advantage for relying on external rather than internal learning (Kessler, Bierly, and

Gopalakrishnan, 2000). Environmental scanning, competitive intelligence, sponsored research,

and membership in relevant trade organizations is a way to uncover external knowledge

opportunities. Developing absorptive capacity, via internal R&D investments appears to be an

important prerequisite for converting external knowledge into internal innovation (Cohen and

Levinthal, 1990).

7

Even if external innovations are identified, that does not mean they will be incorporated into

the firm’s product strategies. A firm that was once highly successful at the vertically integrated

innovation model will tend to believe its innovations superior to any competing ideas from

outsiders. For example, flush from its successful user interface innovations of the 1980s,

engineers at Apple Computer rejected external ideas in areas such as handheld computers,

adopting the phrase “not invented here” to describe such rejection (Kaplan 1996: 156).

2.3 Motivating Spillovers

With external innovation, there is often an unstated assumption that the supply will continue.

But what happens if everyone tries to use others’ basic research? Will “innovation benefactors”

— such as government and nonprofit research sponsors — continue to provide as fertile a field

(Chesbrough, 2003b)? If commercial firms do not realize a return on their innovative activities,

they will tend to under-invest in innovative activities that are either highly risky (e.g. basic

research) or that are easily imitated by free-riding competitors. Therefore, we consider the

incentives for generating the knowledge spillovers at two levels — the individual and the

organizational. This also has important societal implications, such as the funding of basic

research and development by national governments. At the simplest level, such incentives can

reflect direct financial payment to the innovators, but innovation recipients can and do exploit a

wide range of alternatives.

Motivating individuals to generate and contribute their IP in the absence of financial returns

is a significant management challenge for an open innovation approach. One of the simplest

models of motivation is expectancy theory that posits that individuals are motivated when both

valence, the attractiveness of a reward, which can be either intrinsic (e.g. happiness) or extrinsic

(e.g. fame or fortune) and instrumentality, the path to that reward, are present (Lawler, 1971).

8

The integrated innovation model solved this challenge though extrinsic compensation from the

firm coupled with adherence to traditional professional scientific norms, e.g. scientific freedom,

support for publishing. The external model doesn’t formally address individuals but appears to

rely upon others, e.g. universities, to partially or wholly provide motivation.

The incentives for organizations to contribute spillovers fall into two categories. In the one

case, the innovation benefits the innovator and there is no loss from sharing that benefit with

others. For example, customers often share their innovations with their vendors if it means

improved products in the future (von Hippel, 1988). And of course suppliers invest in

innovations to sell more products, as when Intel increases the performance of microprocessors

that it sells to Dell.

Spillovers to a direct competitor are more problematic, but still are economically rational

under conditions of “co-opetition”. Firms in the same industry complement each other in creating

markets but compete in dividing up markets (Brandenburger & Nalebuff, 1996: 34). So if a firm

stands to benefit from an innovation that grows the market, it will accept spillovers if the return

from its share of market growth is attractive enough. For example, Intel’s venture capital arm

makes investments to grow the ecosystem around its microprocessors, even though a small

portion of that investment accrues to AMD, the second-place maker of microprocessors

(Chesbrough, 2003a: 125-131).

3. RESEARCH DESIGN

Our three challenges led to three related research questions:

• What circumstances motivate firms to embrace open innovation approaches as part of

their R&D efforts?

9

• Why would for-profit firms commit their intellectual property as well as ongoing

human resources to an effort that they know will benefit others, including

competitors?

• Why do individuals contribute their IP to a project that benefits firms without

receiving financial remuneration?

We chose to study the use of external innovation in the software industry, in particular the

“open source” movement. Open source and other collaborative development techniques in the

software industry offer examples of how the three key challenges of open innovation can and

have been addressed by commercial firms. Open source also offers an approach to address what

West (2003) refers to as an “essential tension” in information technology innovation:

appropriating the returns from an innovation versus winning adoption of that innovation.

3.1 Traditional Software Production Models

Modern software engineering techniques are based on an abstraction of the software design

to minimize interdependencies between individual components of a complex system. This

enables both specialization in the software development effort and reuse of existing technology

to facilitate cumulative innovation (Krueger, 1992). As such, software development efforts are

highly modular within or between firms (Sanchez and Mahoney, 1996). This specialization in

software mirrors the specialization of other forms of industrial production.

The output of this software production effort is an information good, marketed to individual

consumers or businesses. Even if software is distributed on a physical medium such as a

magnetic tape, floppy, or optical CD-ROM, the value of the software is tied to the information

on those tapes or discs, not the value of the physical medium or the cost of reproduction. As with

10

any other good, firms price their software to appropriate some but not all of the utility derived by

consumers.

While the marginal cost of each copy of a software application is thus very low, initial

development costs are quite high. Commercial firms spend millions to hundreds of millions of

dollars to make a commercial software release, and in most cases are forced to re-invest

comparable amounts every one to three years to continue their ongoing revenue stream. This

gives software firms huge supply side economies of scale: the first copy of Windows is very

expensive, but additional copies cost almost nothing.

Interestingly, many software firms also benefit from not only supply side economies of scale

but demand side economies as well. Most software users would face significant switching costs

in using some other software package, due to some combination of retraining user skills and

converting data stored in proprietary file formats. As Arthur (1996) observes, software thus has

tremendous positive returns to scale, generally allowing only one (or a small number) of winners

to emerge. These winners are tempted to extract rents from their customers by increasing prices

and creating additional switching costs to protect those rents (Shapiro and Varian, 1999). From

these production economics, commercial software firms seek to build complete systems to meet

a broad range of needs, in hopes of forestalling potential competitors and protecting high gross

profit margins.

These supply and demand side economies of scale have fueled ongoing consolidation in the

software industry. Microsoft is the most obvious beneficiary of these scale economies of having

exploited both supply and demand side economies of scale, having captured not only the desktop

operating system market but the most common office applications as well. However,

11

consolidation has also occurred in other segments, such as in enterprise software as with Oracle’s

2005 acquisition of PeopleSoft.

3.2 Open Source Software

Open source software emerged as a reaction to the proprietary software model, with two

direct antecedents. One was the open systems movement — centered around Unix and its

variants — reflecting an attempt by customers to reduce their dependence on proprietary

software vendors. Another antecedent was the creation of university research software during the

1980s, including the BSD variant of Unix from UC Berkeley. However, the open source (and

related free software) movements differed from the open systems and university initiatives by

focusing on user rights, especially establishing a series of principles to enable shared

development and perpetual use rights. The rapid rise of open source in the late 1990s was

enabled by the dissemination of software tools and the Internet to facilitate the shared

distribution production of software (West and Dedrick, 2001, 2005).

Open source software differs from proprietary software in two ways: in its intellectual

property philosophy and how it is produced (West and O’Mahony, 2005). Researchers have

considered each of these in turn:

IP Philosophy. Differences between the open source movement and proprietary software are

most dramatic over the treatment of the source code of software. The definition of “open source”

requires free redistribution of software in source code form and the right to modify the software.

An allied but distinct group, the “free software” movement, also requires that software remain

perpetually “free” by compelling users to return all modifications, enhancements and extensions

(West and Dedrick, 2005). These conditions are enforced by a wide range of software licenses

12

approved by one or both factions (Rosen, 2004). In comparison, proprietary firms aggressviely

protect their software source code.

Production via Collaboration. Another important difference between open source and

proprietary efforts is the collaborative open source production process. In examining two

projects, Mockus et al (2002) concluded that the development was controlled by a small group,

but received occasional error correction from a much larger group of developer-users.

Considering a broader group of projects, Healy and Schussman (2003) showed that participation

was highly skewed according to a power-law (log-log) distribution: a handful of projects attract

most of the attention, and participation in these projects is heavily skewed towards a small

number of contributors.

What motivates individuals to contribute to open source projects? Consistent with

expectancy theory, empirical research on more successful projects (Hars and Ou, 2002; Hertel et

al, 2003; Lakhani & von Hippel, 2003) found three general categories of contributor motivations:

direct utility, either to the individual or to one’s employer; intrinsic benefit from the work, such

as learning a skill or personal fulfillment; and signaling one’s capabilities to gain respect from

one’s peers or interest from prospective employers.

Firm Participation. Despite these key differences between open source and proprietary

software, for-profit IT producers have gotten involved in open source software. Why? West

(2003) showed that in a positive returns environment, such firms made limited use of openness to

win adoption of their technologies, either by opening portions of the their technology or

providing partly open access to key technologies. O’Mahony (2003) demonstrated that while

open source projects employ intellectual property licenses that grant use rights to a broad class of

users, they also used a combination of legal and rhetorical tactics to aggressively safeguard the

13

independence and permanence of their development efforts, particularly when negotiating with

firm seeking to advance potentially conflicting proprietary interests.

But in addition to these independent, organically grown open source projects, firms have also

sponsored their own open source projects. Such sponsored projects differ from the organic ones

in both production and governance, as the bulk of the resources are provided by the sponsor to

achieve its goals (O’Mahony and West, 2005). Firms have also experimented with sponsoring

collaborative software production that is similar to open source in most but not all dimensions,

such as “gated” communities in which collaboration is available to some but not all (Shah,

2004).

Here we consider the strategic motivations and business models of firm involvement in open

source software projects, both those projects that begun autonomously and those created by

sponsors to directly advance firm goals.

3.3 Research Methods

Given the comparative newness of the open innovation paradigm, we chose to use a theory-

building approach grounded in the context of rich data. This draws on established procedures for

generating theory from qualitative data (Glaser and Strauss, 1967), as well as management

studies that employ the inductive method to draw theory from a set of case studies (Harris and

Sutton, 1986; Eisenhardt, 1989).

Our research efforts included both primary and secondary sources. From 2002 through mid-

2005, one author conducted 56 interviews with 46 informants representing 30 organizations. Of

the 30 organizations, 18 were for-profit companies in the I.T. industry. The interviews also

included 7 major open source projects, as well as other professionals indirectly involved in the

industry. Interviews typically ranged from 45-90 minutes, and most were tape recorded for later

14

consultation. This was supplemented by observation of (and, in some cases, participation in) six

Silicon Valley industry conferences and seminars from August 2003 through March 2005 that

focused solely on open source software. This primary data were complemented by a secondary

data sources, we also incorporated secondary data. During the observation period, one of the

authors reviewed approximately 800 news articles from trade journals, business press and

websites related to Linux and other open source topics. We also reviewed prior research from

technology management, sociology and computer science on open source collaboration.

From our data, we sought to identify regular patterns of open innovation among IT firms

actively participating in open source projects, and (where possible) to identify the goals and

motivations for such innovation strategies. Once we identified key patterns, we shared prelimi-

nary conclusions with a subset of informants and used their feedback to refine our conclusions.

4. OPEN SOURCE AS A MANIFESTATION OF OPEN INNOVATION

Open source as an open innovation strategy has two key elements: shared rights to use the

technology, and collaborative development of that technology. Unlike many individual

participants, firms must also consider a third issue: capturing an economic return to justify their

investment.

Here we consider four approaches for external innovation in software, where firms have both

invested in open innovations and benefited from them (Table 5.2).

4.1 Pooled R&D: Linux, Mozilla

A familiar model of open innovation is that of pooled R&D. While cooperative research

often occurs to save costs, prior research also suggests that firms cooperate in cases where they

cannot appropriate spillovers from their research (Ouchi and Bolton, 1988), in areas that are

15

highly risky or for industries most dependent on advanced science (Miotti and Sachwald, 2003).

They also tend to collaborate in industries with strong vertical relationships (Sakakibara, 2001),

with firms that share overlapping technological capabilities and are in the same industry or sector

(Mowery, Oxley and Silverman, 1998).

Two highly visible open source examples are support for the Linux operating system through

the Open Source Development Lab, and the Mozilla web browser. For both, firms donate R&D

to the open source project while exploiting the pooled R&D of all contributors to facilitate the

sale of related products.

A simple example is the Mozilla open source project, a descendant of the Netscape Navigator

browser offered for a wide range of systems — Windows, Macintosh, Linux and at least 7 Unix

variants. This browser was among the first commercial browser products (“Netscape Navigator”,

2004). Navigator held more than two-thirds of the browser market until late 1997 — surpassing

Microsoft’s Internet Explorer — but only two years later the shares were reversed due to IE’s

bundling with Microsoft Windows (Bresnahan and Yin, 2004).

Netscape created the Mozilla open source project in 1998 and terminated all internal

development of it in July 2003— deferring further work to the open source community. At this

point, Unix system vendors such as IBM, HP and Sun were left without a supported browser,

which they needed to sell Internet-connected workstations. Thus, each of them assigned software

engineers to work with the Mozilla project, both to help keep the project moving forward and to

assure that new releases are compatible with their respective systemsi.

The R&D cooperation in the Open Source Development Labs (OSDL) for Linux is more

complex. Founded in 2000, the OSDL takes as its mission “To be the recognized center-of-

gravity for the Linux industry; a central body dedicated to accelerating the use of Linux for

16

enterprise computing” (“Corporate Overview,” 2004). In its first five years, the consortium

began work on three projects: data center Linux, carrier grade Linux and desktop Linux.

The founders, sponsors and other members of OSDL and their motivations for supporting

OSDL could be grouped into four broad categories: vendors of computer and

telecommunications systems, producers of microprocessors, Linux distributors and support

organizations, and developers of complementary software products (Table 5.3).

How do such projects address the three open innovation challenges? For firms participating

in Mozilla, the quid pro quo is straightforward: systems vendors maximize the returns of their

innovation by concentrating on their own needs (such as platform-specific customization), and

then incorporate the shared browser technology into their integrated systems. However, the

motivation challenge is not completely solved, in that the systems vendors assume a pool of

individual open source contributors that sustain innovation in the core product.

For the OSDL, firms contributed their specialized knowledge (e.g. in telecommunications

operations or microprocessor architecture) to build a common platform. OSDL resembles other

self -supporting industrial research consortia, where firms pool interests towards a common goal,

and assume they can both cooperate in supporting that goal and compete in selling their

respective products.

However, both Mozilla and OSDL differ from typical consortia in two ways:

• Spillovers are not controllable. Many consortia reward members by limiting direct

access to the consortium’s research output to member-participants, limiting access to

indirect spillovers. Open source licenses typically make it impossible to limit even

direct access, allowing non-members to accrue many of the same benefits as

members.

17

• Contributions from non-participants. The engineering contributions to these open

source projects extend beyond the sponsoring companies to include user

organizations, academics, individual hobbyists and other interested parties. Unless the

corporate contributions eventually dwarf the individual ones, the projects must

continue to motivate such contributions to survive.

Given these factors, an open source innovation model is inherently more “open” than a

typical R&D consortium, both in terms of exploiting information from outside the consortium,

and sharing that information back out to non-member organizations and individuals.

4.2 Spinouts: Jikes, Eclipse, Beehive

Open innovation can release the potential of technologies within the firm that are not creating

value. In some cases, the technologies are no longer strategic, as with AOL Time Warner’s

decision to spinoff Mozilla into a stand-alone open source project after firing its Netscape

development team (Hansen, 2003).

But in addition to spinoff (and, frequently, abandonment), firms also have opportunities to

release more value from their technologies by situating them outside the firm, but at the same

time maintaining an ongoing corporate involvement. Here we use the term “spinout” to refer to

all cases where firms transform internal development projects to externally visible open source

projects.

If a firm gives away its IP, how can such spinouts create value? One way is that the donated

IP generates demand for other products and services that the donor continues to sell. Two

examples of this come from IBM and its efforts to promote the Java programming language

developed by Sun Microsystems, that was widely embraced by firms competing with Microsoft

in web-based technologies. As Java become more widely adopted, IBM would generate

18

increased revenue from sales of its own hardware and supporting services, especially its

consulting services which have become an increasingly important component of IBM’s overall

revenues.

IBM came to realize that it made sense to take other software projects into the open domain,

as part of its overall strategy. IBM’s first open source spinout came from a pre-production R&D

project. In response to IBM’s growing interest in Java, in early 1996 two IBM researchers began

work on an experimental Java compiler, which they named “Jikes”. They quickly developed a

prototype that was more efficient than Sun’s industry standard compiler. After customer requests

for a better Java compiler, in December 1998 IBM announced the release of Jikes in open source

form to allow external programmers to extend and improve the compiler. Since 2000

development has been led by non-IBM engineers.ii Jikes has been widely adopted, and is now

bundled with several distributions of open source operating systems.

A second IBM spinout came with Java development tools. In 1996, IBM purchased a

Canadian software company that created such tools for its WebSphere application server

product. IBM released much of this technology in open source form when it founded the Eclipse

project in 2001 and these efforts were further boosted by its acquisition of Rational (Brody,

2001). Other software companies involved in web application development, including Borland,

Red Hat, SAP and SuSE, and well as hardware makers HP, Fujitsu and Intel joined the Java

development tools effort. In 2004 the project became an independent non-profit corporation

(“Eclipse Forms Independent Organization,” 2004), although IBM engineers retained technical

leadership of key projects. As an IBM executive later explained, “It is not that we are looking to

make more money off the platform. It is just that we are looking to accelerate the adoption of

Java and the building up of it for all of us” (Southwick, 2004). Very recently, IBM even donated

19

500 software patents to the open source community, while it continues to license other parts of

its patent portfolio for significant revenues.

But despite this openness, BEA and Sun — IBM’s two major rivals in Java applications

servers — chose not to join IBM’s coalition, instead promoting the rival Java Tools Community

(Taft, 2003). During 2004 BEA also created a “Beehive” open source project to release key

application libraries from its WebLogic product for use with other development systems; it also

helped a third party development of a “Pollinate” library to link Beehive with Eclipse. Finally, in

March 2005 BEA officially joined the Eclipse project.

These spinouts also differ in the ongoing participation of their respective firm sponsors. IBM

continues to provide hundreds of programmer-years of software development for Eclipse but

limited support for Jikes, while Netscape has cut all sponsorship ties to Mozilla. The conditions

under which a “foundling” project can become immediately self-sufficient are likely to be much

narrower than one which enjoys ongoing support from its original sponsor.

The spinout thus makes sense for technologies that either are not yet commercialized (as with

Jikes), or that will eventually become commoditized and thus of limited commercial value (as

many predicted for Java development tools). Both IBM and BEA donated internal innovations to

create open source projects, which were intended to fuel adoption of the innovations. As with

other organizations that sponsor open source projects, the benefits included:

• helping establish their technology as de facto standards, which, at a minimum,

reduces the likelihood of having to re-implement their technology to conform to

competing standards;

• attracting improvements and complements that make the technology more attractive;

20

• together, the innovation and complements enable the sale of related products (such as

other components of WebSphere and WebLogic);

• generating mindshare and goodwill with the same audience that includes the potential

customers for these related products; and

• Lowering or eliminating the ongoing costs of supporting projects, while providing

customers of the project some possible source of ongoing support.

These motivations for open source spinouts go beyond those identified for one of the most-

often cited firm sponsor of spinouts. Xerox Parc spun out technologies that no longer aligned

with the company’s strategy (Chesbrough and Rosenbloom, 2002), which is consistent with

Netscape’s exit through creation of the Mozilla project. However, for the Jikes, Eclipse and

Beehive projects, the sponsoring firms spun out open source projects that were closely aligned

with the firm’s ongoing strategies. As West (2003) observed for other open source projects,

relinquishing some level of control was essential to win adoption.

4.3 Selling Complements: Apache, KDE, Darwin

Many goods in computers and electronics fall into what Katz & Shapiro (1985) term the

“hardware-software paradigm”. As Teece (1986) notes, the base innovation (“hardware”)

requires an investment in producing complementary goods (“software”) specialized for that

innovation, in order to make the entire system useful. In many cases, these complements are

more valuable than the core innovation. For example, makers of videogame consoles deliberately

lose money or break even on the hardware so that they can make money from software royalties

(Gallagher and Park, 2002).

In other cases, a system architecture will consist of various components. Some mature (or

highly competitive) components may be highly commoditized, while other pieces are more

21

rapidly changing or otherwise difficult to imitate and thus offer opportunities for capturing

economic value. Two open source examples are the IBM’s WebSphere and Apple’s Safari

browser.

Customers access the WebSphere e-commerce software using standard web browsers, so

IBM originally developed a proprietary httpd (web page) server. IBM later abandoned its server

for the Apache httpd server, recognizing that it would be wasting resources trying to catch up to

the better quality and larger market share enjoyed by Apache (West, 2003). Today, IBM

engineers are involved in the ongoing Apache innovation, both for the httpd server and also

related projects hosted by the Apache Software Foundation (Apache.org website).

Similarly, in 2002 Apple Computer decided to build a new web browser called Safari, to

guarantee one would be available for buyers of its computer systems. The browser built upon

libraries from the Konqueror open source web browser, which in turn were developed to support

the KDE desktop interface for Linux users (Searls, 2003). The move paralleled Apple’s earlier

use of BSD Unix as a foundation for its OS X operating system, in which it created a new open

source project (Darwin) to share all modifications of the BSD code (West, 2003). For both Safari

and OS X, Apple used open source and contributed back its changes, but the company did not

release the remainder of the proprietary code for its browser and OS, respectively (Brockmeier,

2003).

In the case of the Apache, Konqueror and Darwin open source projects, the firms adopting

open source components had four common characteristics:

• there was pre-existing open source code being developed without the intervention of

the focal firms;

22

• the “buy vs. build” decision to use external innovation was made easier because the

code was “free”iii;

• the firms were willing to contribute back to the existing projects on an ongoing basis,

both to assure that the technology continued to meet their respective needs and to

maintain absorptive capacity;

• the firms could continue to yield returns for internal innovation by combining the

internal and external technologies to make a product offering that was not directly

available through open source.

Another model for selling complements is the “dual license” strategy, where a firm develops

code and releases it both as an open source project and a commercial product. Buyers who want

free software get no support and restrictions on source code distribution in exchange for

development feedback. Less price sensitive buyers (e.g., corporations) pay the sponsoring firm a

license fee to receive full features and support (Välimäki, 2003; West & O’Mahony, 2005).

However, the ongoing proprietary control of such sponsored projects mean that they have trouble

attracting external innovation, and open source thus becomes a marketing technique to attract

adopters and build network effects through a large community of adopters.

4.4 Donated Complements: Avalanche, PC Game “Mods”

In other cases, firms make their money off of the core innovation but seek donated labor for

valuable complements.

For decades, I.T. companies have encouraged their users to collaborate and share user-

developed software that filled in the gaps for their proprietary offerings. This has been

particularly relevant for medium and large buyer organizations (companies, universities and

23

government) with large internal I.T. organizations. In the 1960s, IBM sponsored its SHARE user

group, while in the 1970s Digital Equipment Corporation had its DECUS.

More recently, firms have indirectly or directly supported user collaboration that is

coordinated using open source techniques. One example is the Avalanche Technology

Cooperative, a Minneapolis-based nonprofit founded in 2001 to pool IT customizations

developed by local enterprise IT users. This would allow companies to integrate disparate

packages such as PeopleSoft and SAP that do not provide their own integration modules.iv

Another example of donated complements is the use of “mods” for PC video games. The PC

gaming industry competes with lower priced dedicated gaming platforms such as Sony’s

PlayStation2 or Microsoft’s Xbox. The commercial publishers of PC games thus have decided to

exploit the one key advantage they have versus the consoles: the ability for PC users to update

and modify their games. To do this, publishers release editing tools for their games to encourage

user mods that create different environments, scenarios, or even total rebuilds of the game; the

users then freely distribute these mods on the Internet. A few of the mods (such as Battle

Grounds) are developed as open source, but most are developed as closed source.

While mods do not directly generate publisher revenues, the novelty of the mods extends the

otherwise relatively short demand period for most computer games. Meanwhile, the mods keep

the name of the game in front of consumers for additional months, while the publishers need

years to prepare follow-on products. This external innovation keeps the product current without

tying up internal innovation resources. In rare cases, the publisher serves the need identified by

the mod by creating its own game or even buys the mod outright.

As with open source, a key issue for mods is motivating the contributors. The motivations

parallel those for open source: direct utility, intrinsic reward or external signaling. Individuals (or

24

virtual teams) contribute mods because of their creative nature, love of either the computer game

they modified or the milieu they recreated via their mod (Todd, 2004). Students are also frequent

contributors, increasing their enjoyment of a favorite game (direct utility) as well as signaling

their value to potential employers.

The computer game industry highlights three key ideas for attracting external innovation that

similar to those for open source:

• minimizing technical obstacles. Contributors develop mods because they can build

upon the publisher’s proprietary innovation to make a compelling game experience.

As with other software development platforms (such as operating systems or

databases), third party developers are attracted by platform capabilities and the

prompt availability of development tools.

• creating an infrastructure that encourages participation and collaboration. For open

source, this is a project website and e-mail lists, but for mods this would be a

distribution site that highlights the mods. Modern technologies make the cost of such

infrastructure quite low.

• recognition for contributors, including added visibility for the most popular creators.

For example, since 2002 Apple has given annual awards for the best use of open

source related to its OS X operating system.

However, the mods also help address one problem that’s very different from those of

business-oriented source projects. As with other entertainment products, novelty-seeking

consumers eventually grow bored with a PC game; by combining the core game engine with new

externally generated game scenarios, the external innovation extends the life of the core

(internally developed) innovation. Of course, this novelty comes at the potential expense of loss

25

of some control over the software product. For example, recently “modders” unlocked some

features in the PC version of Grand Theft Auto: San Andreas (GTA:SA) that enabled a

pornographic “mini-game.” As a result of this activity, the rating on all versions of GTA: SA

(not just the PC version) were changed to “Adults Only” thereby severely curbing the availability

of the title.

5. DISCUSSION

5.1 Open Source as Open Innovation

How did firms in open source software efforts effectively exploit open innovation? We

identified four strategies of open innovation in software that addressed the unique combination

and exploitation of innovation from multiple sources. Table 5.4 cross references these four

strategies with the key open innovation challenges we identified.

Despite the wide popularity of open source collaboration, software firms appear to embrace

open innovation only when there is no alternative — specifically a broad dispersal of both

production knowledge and market share that forces vertically integrated producers to admit that

they no longer can “do it all.” The use of open source by firms typically begins in ways that do

not disrupt their fundamental business strategy (e.g. selling complements), or comes at a time

when their existing strategy is so threatened that they are forced then to make drastic changes.

At the same time, firms faced (and often acknowledged) the risks of collaborating, risks that

have not yet been fully realized. For example, encouraging users to develop complements could

reduce the availability of vendors to achieve proprietary lock-in, an explicit long-term goal of the

Avalanche project.

26

Especially significant is the role of open source in enabling pooled R&D, which has been

seen in other industries but rarely in software. This scarcity is hardly surprising, given that up

front R&D forms one of the major barriers to entry in the software industry (Arthur, 1996;

Cusumano, 2004). Even for products for which software is only part of the value creation —

such as computer systems — the shared R&D available through open source software such as

Linux can significantly reduce the barrier to new entrants (West and Dedrick, 2001).

Interviews suggested that firms were willing to share software R&D — and thus eliminate

potential differentiation for the component — in areas that were necessary prerequisites for

selling a complete system (e.g. “infrastructure layer”) but offered few opportunities for

differentiation. Removing duplicative investment reduced costs for this type of commodity

component, consistent with Miotti and Sachwald’s (2003) finding that R&D collaboration with

more direct competitors was associated with reducing costs.

Is such pooled R&D an example of open innovation? As with other aspects of open

innovation, it depends on the ability of firms to capture value for their investment (Chesbrough,

Chapter 1). So if the firms use open source to provide a common base, but have a way to sell

complements, then investing in an open source project to provide pooled R&D is consistent with

open innovation.

To what degree are the lessons of pooling open source R&D applicable to other industries? If

cost savings are a major goal of the collaborative R&D, then we would presume that the

transaction costs of creating and maintaining such collaboration would have to be limited to

make collaboration more attractive than a go-it-alone strategy. Two factors tend to reduce these

costs, at least for open source projects. First, such virtually dispersed, decentralized production

takes advantage of software and communication technologies that facilitate joint software

27

development (West and Dedrick, 2001; Lerner and Tirole, 2002). Secondly, considerable effort

has gone into developing mechanisms for coordinating and governing such efforts (O’Mahony,

2003; Shah, 2004; O’Mahony and West, 2005). While we would not suggest that such

collaboration and governance advances are necessary for other forms of pooled open innovation,

we predict that adapting such practices to other industries would make such pooled R&D more

likely.

5.2 Where Open Source and Open Innovation Part Ways

For the firms and projects in our sample, we concluded that most firm involvement in open

source fits the Chesbrough (2003a) definition of Open Innovation, in which firms both use a

broad range of external sources for innovation and seek a broad range of commercialization

alternatives for internal innovation. However, we would not mean to suggest that all open source

software is an example of open innovation — or for that matter, that all open innovation in the IT

industry relates to open source software.

In fact, some form of open innovation has become the norm in the computer industry for

decades. For the reasons identified by Teece (1986), Shapiro and Varian (1999) and others,

computer vendors have long relied upon third-party suppliers of complementary software

products; this has been true of even the most proprietary of systems, such as Apple’s Macintosh

(West, 2005). However, what we now refer to as open innovation was extended by IBM’s 1980

decision to source its PC CPU and operating system from Intel and Microsoft instead of its

traditional vertical integration.

Examples outside the overlap of open source and open innovation include the following

(Figure 5.1):

28

• Open Source but not Open Innovation. Open Source is only Open Innovation if it has

a business model. There are tens of thousands of Open Source projects created and

run for non-pecuniary motivations — such as the work done within Project GNU,

which is motivated by a strong ideology (West & Dedrick, 2005). Also this category

could be AOL’s exit strategy with Mozilla, which (like many of the Xerox PARC

spinoffs) reflected the failure of the sponsor to create a viable business model, leaving

the foundling innovation abandoned to whoever is willing to nurture it.

• Open Innovation but not Open Source. The “Wintel” PC using Windows and Intel

components represents a powerful embrace of what we now term Open Innovation.

On the one hand, it lowered barriers to entry, enabling the rise of numerous makers of

PC “clones” (Moschella, 1997). On the other hand, IBM’s failure to appropriate

adequate returns from its PC systems integration activities led to its 2004 exit from

the PC industry.

• Neither Open Source nor Open Innovation. As noted above, the use of independent

software vendors (ISVs) for external innovations is the norm in the computer

industry. However, some firms are heading in the other direction, becoming

increasingly integrated. For example, Microsoft has integrated downstream from

operating systems into applications such as Windows, Money and SQL Server –

decreasing the relative importance of third party application providers. Intuit is

adding additional services (such as loans) to extend its Quicken financial

management software. In video games, console makers supply both hardware and

software, with Nintendo particularly dependent on its internally generated game

franchises like Pokemon and Mario Brothers rather than ISV-supplied titles.

29

In a self-interested prediction, Grove (1996) argued that the IT industry had been irrevocably

transformed by component-based systems integration model, in which component suppliers

using horizontal specialization achieved insurmountable economies of scale over vertically

integrated innovators. We believe that open source is also having a profound impact on IT value

creation and capture, but it is too soon to say what effect open source open innovation will have

upon proprietary alternatives.

5.3 Open Source Collaboration Within a Value Network

The chapters in Section III how open innovation both enables and builds upon inter-

organizational collaboration. Such collaboration has been variously referred to as a network form

of organization (Powell, 1990), value network (Christensen and Rosenbloom, 1995) or an

ecosystem (Iansiti and Levien, 2004a). Open innovation in the IT industry — and particularly the

commercial support of open source software — certainly would fit such a classification.

Due in large part to IBM’s aforementioned shift from vertical integration to externally

sourced components, the IT industry has moved to a separation of technical activities based on a

modular subdivision of labor between firms that parallels the technical modularity of the overall

systems architecture (Grove, 1996; Langlois, 2003b). This form of open innovation enables firms

that provide a component for a complex system to use various appropriability mechanisms to

capture a return from their portion of the system’s value creation (West, Chapter 6). When open

source software is used as part of a complex system, a firm still faces the fundamental issues of

coordinating the systemic innovation, assuring overall value creation and capturing the firm’s

portion of that value. These issues are common to any open innovation value network, as noted

by Maula, Keil and Salmenkaita (Chapter 12) and Vanhaverbeke and Cloodt, (Chapter 13). But

the use of open source software changes this ecosystem management in at least two ways.

30

The task is made easier where open source software reflects the commoditization of some

portion of the overall complex system. Because open source is (by definition) free,v the use of

open source makes value capture less important for that component: pooled R&D to develop a

shared component reflects an acknowledgement of the commoditization of that component.

Value capture is still a factor if the firm merely shifts its value capture from selling software

licenses to selling support services for that software.

However, economic coordination of the systemic innovation is made more difficult if

participants are motivated not by pecuniary goals such as value capture, but instead some

combination of intrinsic and extrinsic factors. This chapter has identified some of the ways that

firms can motivate the supply of external innovations from individuals, while the work of

O’Mahony (2003; O’Mahony and West, 2005) highlights the motivations of open source

communities in their collaboration with firms. But such coordination poses difficulties, both in

practice and also for our theories of open innovation.

One thing that is clear from studying open source innovation — both through direct

observation and from prior accounts of the process (e.g. DiBona et al, 1999; O’Mahony, 2003;

Shah, 2004) — is the distinct set of attitudes and norms that set open source software production

apart from commercial IT innovation. Shared organizational culture is long-identified form of

governance within organizations, particularly for creative, individualistic workers and when

direct monitoring of performance is difficult (cf. Kunda, 1992). But little is known about how

such culture is created and maintained across a network organization, particularly if that culture

is used to facilitate the process of open innovation.

31

5.4 Limitations

There are key limitations to the generalizability of our findings. While we were informed by

broader secondary data on the open source movement, the framework was constructed using

inductive theory-building from a small number of cases, anchored to specific firms in U.S. IT

industry. As such, they may not generalize to other firms, let alone other industries.

More seriously, there are fundamental questions about drawing conclusions regarding an

emergent phenomenon: open source software as part of corporate open innovation strategies is

still a comparatively recent phenomenon, and there are many key questions regarding the

sustainability of this model.

The open source movement built on a confluence of ideology, professional norms and

enthusiasm; some question the long-term sustainability of such motivations. Also, many projects

have been created as challenges to an entrenched incumbent (e.g. Microsoft), and if such

challenges are largely unsuccessful, vendor interest in sponsoring future open source efforts

could wane. In addition, as measured by traditional profitability standards, many open source

projects have had problems. For example, currently JBoss and MySQL appear to be unprofitable

and Linux vendor Red Hat is reportedly operating at breakeven or slight profit levels (Lyons,

2005).

Also, open source has yet to fully resolve the IP issues of accepting donations from a wide

community of unknown contributors, as reflected by SCO’s legal attacks against Linux. While

such potential infringement has been attributed to ignorance, others have suggested that

infringing “stealth” IP could be deliberately donated to projects to sabotage their success (Cargill

and Bolin, 2004).

32

Finally, many have accused open source software as being more about re-implementing and

commoditizing prior technologies than creating new innovations. The adoption of Linux as a

low-cost Unix is the best known example of such commoditization, but other examples include

MySQL and OpenOffice. To rebut such criticisms, open source supporters point to the mainly

Internet innovations that were first implemented using open source projects (such as X, BSD,

sendmail or Apache) and to ongoing university-led research projects such as the Globus

Alliance. Even without this, prior researchers have shown how radical innovations disrupt

existing market structure if they merely deliver similar capabilities at significantly lower cost

(Christensen, 1997; Leifer et al, 2000; O’Connor, Chapter 4); open source software certainly

would qualify as a radical (or “disruptive”) innovation under such definitions.

5.5 Future Research

There are many factors that enable open innovation in open source. Future research could

consider whether these characteristics of open source are prerequisites for other forms of open

innovation:

• feasibility of virtual teams as a way to organize innovation, enabling pooled R&D and

other collaboration between organizations;

• a culture of open innovation throughout such teams that spans organizations,

vanquishing both a “not invented here” attitude towards external innovation and a

“crown jewels” attitude of controlling internal innovations;

• modularization of technologies and products, to allow the external production of

components or complements;

• formal IP mechanisms that encourage collaboration;

• economic prerequisites for effective open source collaboration; and

33

• abandonment of open source projects: how and when do they terminate?

Our attempts to define open innovation uncovered questions beyond those specific to

software. Two relate to the availability of external spillovers:

• commercialization of public research. Universities have gotten increasingly

sophisticated about profiting from their research spillovers, a trend encouraged in the

U.S. by the Bayh-Dole Act (Colyvas et al, 2002; Fabrizio, Chapter 7). Will this

restrict the flow of external innovations or provide an ongoing incentive for greater

supply?

• increasing conflict over patents. The increasing scope and commercial value of

patents has spawned various concerns that patents will inhibit traditional closed

innovation (e.g. Jaffe & Lerner, 2004); the threat to external spillovers is likely

greater.

Other questions relate to potential patterns for leveraging external knowledge:

• boundaries of the firm. While firms are making increasing use of virtual teams,

collaborative R&D consortia and other shared fora, the root cause is far from clear. Is

this evidence that R&D is no longer necessary to internalize in firms? Or are these or

merely examples of specific innovations that cannot be appropriated by firms,

symptomatic of industry segments that have become commoditized and thus where

R&D produces little competitive advantage?

• role of process innovations. Companies like Dell combine external product

innovations with internal process innovations. Research on open innovation has

focused on innovation to produce products, so would the process of open innovation

be fundamentally different when it incorporates process innovations?

34

• low R&D intensity firms. Many firms have low R&D intensity, either due to size (e.g.

small businesses) or industry characteristics (low tech). Are they pursuing “external

innovation,” “open innovation,” or (as commonly assumed) “no innovation”

strategies?

5.6 Conclusions

Open source software offers a significant example of how open innovation can transform an

industry. While producers of complements and add-ons have occurred since the IBM 360, the

rise of open source has increased attentions on alternate forms of organizing to exploit firms’ IP.

The use of external innovation is not a wholly new idea, however the activities of firms

surrounding open source software highlights ways firms can reap returns by “giving away” their

IP and related firm resources. The transformation appears hastened by the nature of the good, the

available tools, and previous trends in the sector away from vertical integration.

Open source software provides a powerful example of how firms can manage a complex

ecosystem to combine external and internal innovations, creating an architecture for the whole

product solution that both creates and captures value. Some of the sociological and legal

characteristics may seem particularistic to open source, particularly with the culture of “free

software” (West and Dedrick, 2005). However, the conflicts around open source — between

those who want to share value and others who want to capture value from shared innovation —

anticipate parallel concerns in other industries, as will be discussed in the next three chapters

(West, Chapter 6; Fabrizio, Chapter 7; Simcoe, Chapter 8).

35

6. REFERENCES

“Corporate Overview,” Open Source Development Labs, April 1, 2004, URL:

http://www.osdl.org/about_osdl/OSDL_overview_website.pdf

“Eclipse Forms Independent Organization,” press release, February 2, 2004, URL:

http://www.eclipse.org/org/index.html

“Netscape Navigator”, Wikipedia, April 16, 2004, URL:

http://en.wikipedia.org/wiki/Netscape_Navigator, accessed May 22, 2004.

Arthur, W. Brian, 1996. “Increasing Returns and the New World of Business,” Harvard Business

Review, 74/4: 100-109.

Bekkers, Rudi, Geert Duysters and Bart Verspagen, (2002) “Intellectual property rights, strategic

technology agreements and market structure: the case of GSM.” Research Policy, 31/7:

1141-1161.

Brandenburger, Adam M. and Nalebuff, Barry J. (1996) Co-opetition, New York: Doubleday.

Bresnahan, Tim and Yin, Pai-Ling (2004) Standard setting in browsers: technology and (real

world) incomplete information. Standards and Public Policy conference, Federal Reserve

Bank of Chicago, May 13 - 14.

Brockmeier, Joe. (2003) “Is Open Source Apple’s Salvation?,” NewsFactor Network, April 21,

2003, URL: http://www.newsfactor.com/perl/story/21318.html

Brody, Steve, “Interview: The Eclipse code donation,” IBM developerWorks, 1 November 2001

URL: http://www.ibm.com/developerworks/linux/library/l-erick.html

Cargill, Carl & Bolin, Sherrie (2004) “The Changing Nature of Standards Organizations: Walden

Pond has been Drained.” Standards and Public Policy conference, Federal Reserve Bank of

Chicago, May 13 - 14.

36

Chesbrough, Henry and Rosenbloom, Richard S. (2002) The role of the business model in

capturing value form innovation: evidence from Xerox corporation’s technology spin-off

companies. Industrial and Corporate Change, 11/3: 529-555.

Chesbrough, Henry W. (2003a) Open Innovation: The New Imperative for Creating and

Profiting from Technology. Boston, MA: Harvard Business School Press.

Chesbrough, Henry W. (2003b) The Era of Open Innovation. Sloan Management Review, 44/3:

35-41.

Christensen, Clayton M. 1997. The Innovator’s Dilemma: When new technologies cause great

firms to fail. Boston: Harvard Business School Press.

Christensen, Clayton M.; and Rosenbloom, Richard S. 1995. “Explaining the attacker's

advantage: technological paradigms, organizational dynamics, and the value network,”

Research Policy 24/2: 233-257.

Cohen, Wesley M. & Levinthal, Daniel A. (1990) “Absorptive capacity: a new perspective on

learning and innovation.” Administrative Science Quarterly, 35/1: 128-152.

Colyvas, Jeannette, Michael Crow, Annetine Gelijns, Roberto Mazzoleni Richard R.Nelson,

Nathan Rosenberg, Bhaven N.Sampat (2002) “How do university inventions get into

practice?” Management Science, 48/1: 61–72.

Cusumano, Michael A. (2004). The Business of Software. New York: Free Press.

David, Paul A., Hall, Bronwyn H., and Toole, Andrew A. (2000) “Is public R&D a complement

or substitute for private R&D? A review of the econometric evidence.” Research Policy,

29/4-5: 497-529.

DiBona, Chris, Sam Ockman and Mark Stone, eds. 1999. Open Sources: Voices from the Open

Source Revolution, Sebastopol, Calif.: O’Reilly

37

Eisenhardt, Kathleen M. 1989., “Building Theories from Case Study Research,” Academy of

Management Review 14/4: 532-550.

Gallagher, Scott. and Park, Seung Ho (2002) “Innovation and competition in standard-based

industries: A Historical Analysis of the U.S. Home Video Game Market.” IEEE Transactions

on Engineering Management, 49/1: 67-82.

Glaser, Barney and Anselm Strauss, 1967, The Discovery of Grounded Theory: Strategies of

Qualitative Research. London: Wiedenfeld and Nicholson.

Gomes, Lee. (2004) “Avalanche Project is Clearing the Path for Tech Cooperation.” Wall Street

Journal, April 12, p. B1.

Gonsalves, Antone and Coffee, Peter. (1998) “Jikes! More Open Source Code,” PC Week,

December 7, p. 6.

Grove, Andrew S. (1996). Only the Paranoid Survive: How to Exploit the Crisis Points that

Challenge Every Company and Career, New York: Doubleday.

Hansen, Evan, “AOL lays off Netscape developers,” CNET News.com, July 15, 2003, URL:

http://news.com.com/2100-1032_3-1026078.html

Harris, Stanley G., Sutton, Robert I. 1986. “Functions of Parting Ceremonies in Dying

Organizations,” Academy of Management Journal. 29/1: 5-30.

Hars, Alexander and Ou, Shaosong (2002) “Working for free? Motivations for participating in

open-source projects.” International Journal of Electronic Commerce, 6/3: 25-39.

Healy, Kieran and Alan Schussman 2003. “The Ecology of Open-Source Software

Development”. Working paper, Department of Sociology, University of Arizona, January 29,

http://opensource.mit.edu/papers/healyschussman.pdf.

38

Hertel, Guido, Niedner, Sven and Herrmann, Stefanie (2003) “Motivation of software developers

in open source projects: an Internet-based survey of contributors to the Linux kernel.”

Research Policy, 32/7: 1159-1177.

Iansiti, Marco and Levien, Roy (2004a); The keystone advantage: What the new dynamics of

business ecosystems mean for strategy, innovation and sustainability, Boston: Harvard

Business School Press.

Jaffe, Adam B. and Lerner, Josh. (2004) Innovation and Its Discontents: How Our Broken Patent

System is Endangering Innovation and Progress, and What to Do About It. Princeton, NJ:

Princeton University Press.

Kaplan, Jerry (1996) Startup: A Silicon Valley Adventure, Paperback ed, New York: Penguin.

Katz, Michael L. and Shapiro, Carl. (1985) “Network externalities, competition, and

compatibility.” American Economic Review, 75/3: 424-440.

Kessler, Eric H., Bierly, Paul E., Gopalakrishnan, S Shanthi. (2000) “Internal vs. external

learning in new product development: effects of speed, costs and competitive advantage.”

R&D Management, 30/3: 213-224.

Krueger, Charles W. (1992). “Software reuse,” ACM Computing Surveys, 24/2: 132-183.

Kunda, Gideon. 1992. Engineering culture: control and commitment in a high-tech corporation.

Philadelphia: Temple University Press.

Lakhani, Karim R. and von Hippel, Eric. (2003) How open source software works: “free” user-

to-user assistance. Research Policy, 32/6: 923-943.

Langlois, Richard N. 2003b. “Modularity in technology and organization,” Journal of Economic

Behavior and Organization, 49/1: 19-37.

39

Lawler, Edward E. (1971) Pay and Organizational Effectiveness: A Psychological View, New

York: McGraw-Hill.

Leifer, Richard, Christopher M. McDermott, Gina Colarelli O’Connor, Lois S. Peters, Mark P.

Rice, Robert W. Veryzer, Mark Rice, (2000) Radical innovation: how mature companies can

outsmart upstarts, Boston: Harvard Business School Press.

Lerner, Josh and Jean Tirole 2002. “Some Simple Economics of Open Source,” Journal of

Industrial Economics 50/2: 197-234.

Lieberman, Marvin B. and Montgomery, David B. (1998) “First mover (dis)advantages:

retrospective and link with the resource-based view.” Strategic Management Journal, 19/12:

1111-1125.

Lyons, Daniel. (2005) “Open Source Smackdown.” Forbes.com. (June 15).

http://www.forbes.com/2005/06/15/jboss-ibm-linux_cz_dl_0615jboss.html

Miotti, Luis and Frédérique Sachwald (2003) “Co-operative R&D: why and with whom?: An

integrated framework of analysis” Research Policy, 32/8: 1481-1499.

Mockus, Audris, Fielding, Roy T. and James D. Herbsleb. 2002. “Two case studies of open

source software development: Apache and Mozilla.” ACM Transactions on Software

Engineering and Methodology, 11/3: 309-346.

Moschella, David C., Waves of power: dynamics of global technology leadership, 1964-2010,

New York: AMACOM, 1997.

Mowery, David C., Oxley, Joanne E., Silverman, Brian S. (1998). “Technological overlap and

interfirm cooperation: implications for the resource-based view of the firm,” Research

Policy, 27/5: 507-523.

40

Nelson, Richard R. and Winter, Sidney G. (1982) An Evolutionary Model of Economic Change.

Cambridge, Mass.: Harvard University Press.

O’Mahony, Siobhán. (2003) “Guarding the commons: how community managed software

projects protect their work.” Research Policy, 32/7: 1179-1198.

O’Mahony, Siobhán and West, Joel (2005). “Building a Participation Architecture in Open

Source Communities,” Harvard Business School working paper, October.

Ouchi , William G. and Michele Kremen Bolton (1988) “The Logic of Joint Research and

Development” California Management Review 30/3: 9-34.

Powell, Walter W. (1990). “Neither Market Nor Hierarchy: Network Forms of Organization.” In

Barry M. Staw and Larry L. Cummings, eds., Research in Organizational Behavior 12.

Greenwich, CT: JAI Press.

Rosen, Lawrence (2004). Open Source Licensing: Software Freedom and Intellectual Property

Law, Upper Saddle River, NJ.

Sakakibara, Mariko (2001) “Cooperative research and development: who participates and in

which industries do projects take place?” Research Policy, 30/7: 993-1018.

Sanchez, Ron and Mahoney, Joseph T. (1996) “Modularity, Flexibility and Knowledge

Management in Organizational Design. “Strategic Management Journal.

Schumpeter, Joseph A. (1934), The Theory of Economic Development, Cambridge, Mass.,

Harvard University Press.

Searls, Doc “Surprise: Apple’s New Browser Is a Sister to Konqueror,” LinuxJournal.com,

January 11, 2003, URL: http://www.linuxjournal.com/article.php?sid=6565

41

Shah, Sonali 2004. “Understanding the nature of participation and coordination in open and

gated source software development communities”. Proceedings of the Academy of

Management Conference, New Orleans, August 9-11, B1-6.

Shapiro, Carl & Hal R. Varian (1999). Information rules: a strategic guide to the network

economy. Boston, Mass.: Harvard Business School Press.

Southwick, Karen “Big Blue’s Mr. Web services,” March 17, 2004, CNET News.com, URL:

http://news.com.com/2008-7345_3-5173667.html

Taft, Darryl K., “Sun Mulls Joining Java Eclipse Effort,” eWeek, September 1, 2003, URL:

http://www.eweek.com/article2/0,1759,1236123,00.asp

Teece, David (1986) “Profiting from technological innovation: implications for integration,

collaboration, licensing and public policy.” Research Policy, 15/6, 285-305.

Tennenhouse, David. (2003) “Innovation breeds success at Intel.” IEE Engineering

Management, 13/6: 44-47.

Todd, Brett. (2004) The whys of modding. Computer Games, No. 163, June, 38-40.

Välimäki, Mikko, (2003) “Dual Licensing in Open Source Software Industry,” Systemes

d’Information et Management, January, URL: http://opensource.mit.edu/papers/valimaki.pdf.

von Hippel, Eric (1988) The Sources of Innovation. New York: Oxford University Press.

West, Joel (2003) “How open is open enough? Melding proprietary and open source platform

strategies.” Research Policy, 32/7, 1259-1285.

West, Joel, 2005. “The fall of a Silicon Valley icon: Was Apple really Betamax redux?” in

Richard A. Bettis, ed., Strategy in Transition, Oxford: Blackwell, pp. 274-301.

West, Joel and Jason Dedrick. (2001), “Open Source Standardization: The Rise of Linux in the

Network Era,” Knowledge, Technology and Policy 14/2: 88-112.

42

West, Joel and Jason Dedrick. (2005) “The Effect of Computerization Movements Upon

Organizational Adoption of Open Source,” Social Informatics Workshop: Extending the

Contributions of Professor Rob Kling to the Analysis of Computerization Movements, Irvine,

Calif., March 11, 2005. URL: http://www.crito.uci.edu/2/si/resources/westDedrick.pdf

West, Joel, and O’Mahony, Siobhan. (2005) “Contrasting Community Building in Sponsored

and Community Founded Open Source Projects.” Proceedings of the 38th Annual Hawai’i

International Conference on System Sciences, Waikoloa, Hawaii.

43

7. FIGURES AND TABLES

Innovation Model Management Challenges Resulting Management Techniques
Proprietary
(or internal or

“closed”)

1. Attracting “best & brightest”
2. Moving research results to

development

1. Provide excellent compensation,
resources, and freedom.

2. Provide dedicated development
functions to exploit research and
link it to market knowledge.

External 1. Exploring a wide range of
sources for innovation.

2. Integrate external knowledge
with firm resources &
capabilities

1. Careful environmental scanning
2. Developing absorptive capacity,

and/or using alliances, networks, and
related consortia.

Open 1. Motivating the generation &
contribution of external
knowledge

2. Incorporating external
sources with firm resources &
capabilities

3. Maximizing the exploitation
of diverse IP resources

1. Provide intrinsic rewards (e.g.
recognition) and structure
(instrumentality) for contributions.

2. As above.
3. Share or give away IP to maximize

returns from entire innovation
portfolio.

 Table 5.1: Models of Innovation and Resulting Managerial Issues

Project Product Category Approach
Apache web server shared R&D
Darwin operating system selling complements
Berkeley DB database spin-in, then dual license
Eclipse programming environment spinout, then shared R&D
Jikes Java compiler spinout
Linux operating system shared R&D
Mozilla web browser spinout, then shared R&D
MySQL database dual license
OpenOffice business productivity selling complements
Sendmail mail router spin-in, then dual license

 Table 5.2: Open source projects as examples of open innovation

44

Category Companies Motivation

Computer systems
vendor

Dell
Fujitsu
Hitachi
HP
IBM
NEC
Sun

These vendors spent the late 1980s and 1990s
fighting the “Unix wars” with mutually incompatible
Unix implementations for their workstations and
servers. In the late 1990s, they began shifting resources
from their proprietary Unix implementations towards
adapting and extended a shared implementation of
Linux.

Telecommunications
vendor

Alcatel
Cisco
Ericsson
NEC
Nokia
NTT
Toshiba

These vendors used Unix to run their switching
systems but began shifting to Linux. As with systems
vendors, interested in assuring that Linux evolved to
work with their respective hardware and customers.

Microprocessor
producer

AMD
Intel
Transmeta

Makers of Intel-compatible processors wanted to
speed the shift of enterprise applications from
proprietary RISC processors to their commodity
processors.

Linux distributor
(server and
desktop)

Miracle Linux
NEC Soft
Novell
Red Hat
SuSE
Turbolinux

Distributors have a clear interest both in free riding
off the work of others in developing Linux, and making
sure that the software met the specific needs of their
customers.

Embedded Linux
distributor

LynuxWorks
MontaVista
TimeSys
Wind River

Similar to motivations of desktop and server Linux
distributors, but need to support more heterogeneous
customer needs for use with custom system
configurations.

Linux support
company

VA Software
Linuxcare
LynuxWorks

Without development capabilities, the firms both
want to leverage the work of others and understand
how it met customer needs.

Software developers
Computer

Associates
Trolltech

Want to make the operating system more reliable for
running their specific applications and libraries.

Founding member in bold
Source: OSDL and company websites (as of May 2004)

 Table 5.3: Members of the Open Source Development Labs

45

Open Source
Strategy

Maximizing Returns
of Internal
Innovation

Role of External
Innovation

Motivating External
Innovation

Challenges

Pooled R&D Participants jointly
contribute to shared
effort

Pooled contributions
available to all

Ongoing institutions
establish legitimacy
and continuity

Coordinating and
aligning shared
interests

Spinouts Seed non-commercial
technology to support
other goals

Supplants internal
innovation as basis of
ongoing innovation

Free access to
valuable technology

Sustaining third
party interest

Selling
Complements

Target highest value
part of whole product
solution

External components
provide basis for
internal development

Firms coordinate
ongoing supply of
components

Maintaining
differentiation as
shared components
add capabilities

Donated
Complements

Provide an extensible
platform for external
contributors

Adding variety and
novelty to established
products

Recognition and other
non-monetary rewards

Third parties can
control the user
experience

 Table 5.4: Open source strategies as solutions to open innovation challenges

Open Innovation not Open Innovation

Open Source

Apple: Darwin
BEA: Beehive

IBM: Apache, Eclipse,
Jikes

OSDL

Project GNU

Not Open Source
PC makers: CPU,

Windows
Game Mods

Microsoft: applications†
Intuit: Quicken†

† Increasing use of vertical integration, with some reliance on external innovations

Figure 5.1: Overlap of Open Source and Open Innovation

46

8. END NOTES

i Interview, Asa Dotzler, Mozilla.org, March 8, 2004.

ii Interview with David Shields, IBM Corporation, May 24 and June 10, 2004, as well as news

coverage including Gonsalves and Coffee (1998).

iii Both Apache and BSD packages were open without restriction in the typology of West

(2003), while KDE contained the compulsory sharing restrictions of the GPL.

iv Interview with Scott Lien and Andrew Black, Avalanche Technology Cooperative, March

16, 2004; see also Gomes (2004).

v The ongoing debate over open source as “free speech” versus “free beer” is beyond our

scope; see, for example, West and Dedrick (2005).

